应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估Using Fruit Fly Optimization Algorithm Optimized General Regression Neural Network to Construct the Operating Performance of Enterprises Model
潘文超;
摘要(Abstract):
近年来,台湾受到美国次贷风暴及欧洲债信的影响,许多大型企业瓦解的事件陆续发生,因此,公司管理阶层有必要好好地检视公司的财务状况,及早防范公司可能面临的经营风险。文章按照财务五力搜集台湾企业财务比率资料,根据活动力、稳定力与收益力进行灰关联分析,再将分析结果按照灰关联度进行排序,以了解各企业的经营绩效排名;然后采用果蝇优化算法优化广义回归神经网络、一般广义回归神经网络与多元回归模型,进行企业经营绩效侦测模型的建构,以供研究人员及公司管理阶层参考。分析结果显示,应用果蝇优化算法优化广义回归神经网络在企业经营绩效侦测模型的预测误差有很好的收敛结果,也有很好的分类预测能力。
关键词(KeyWords): 果蝇优化算法;企业经营绩效;优化问题;广义回归神经网络
基金项目(Foundation):
作者(Authors): 潘文超;
参考文献(References):
- [1]Hart,P E,Nilsson,N J and Raphael,B.A formal basisfor the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cy-bernetics SSC4,1968(2):100-107.
- [2]Friedman,M.A mathematical programming model foroptimal scheduling for buses depature under determin-istic condition[J].Transportation Research,1976,10(2):83-90.
- [3]Gupta,Y P,Gupta,M C,Kumar,A and Sundram,C.Agenetic algorithm-based approach to cell compositionand layout design problems[J].Int.Journal of Produc-tion Research,1996,34(2):447-482.
- [4]Yan,S Y,Lee W T and Shih,Y L.A path-based analo-gous particle swarm optimization algorithm for mini-mum cost network flow problems with concave arccosts[J].Transportation Planning Journal,2007,36(3):393-424.
- [5]Pan,W T.A new evolutionary computation approach:Fruit Fly Optimization Algorithm[C].2011Conferenceof Digital Technology and innovation Management Tai-pei,2011.
- [6]Pan,W T.A new fruit fly optimization algorithm:Tak-ing the financial distress model as an example[J].Knowledge-Based Systems,In Press,2011.
- [7]Tong,L L and Shih,B C.Predict the financial crisis byusing grey relation analysis,neural network,and case-based reasoning[J].Chinese.Manage Rev,2011,4(2):25-37.
- [8]Deng,J.The control problems of grey system[J].Sys-tem&Control Letters,1982(5):288-294.
- [9]Wen,K L,Chang Chien S K.,Yeah C K,Wang,C Wand Lin H S.Apply matlab in grey system theory[M].Chuan Hwa Book Co.Ltd,Taiwan,2006.
- [10]Specht,D.F.Probabilistic neural networks and the poly-nomial adaline as complementary techniques for classifica-tion[J].IEEE Trans.on Neural Networks,1990,1(1):111-121.
- [11]Specht,D F.A general regression neural network[J].IEEE Tras.Neural Networks,1991,2(6):568-576.
- [12]Bradley,A P.The use of the area under the ROCcurve in the evaluation of machine learning algo-rithms[J].Pattern Recognit,1997,30(7):1145-1159.
- [13]Hand,D J and Till,R J.A simple generalisation of thearea under the ROC curve to multiple class classifica-tion problems[J].Mach Learn,2001,45(2):171-186.
- [14]Holland,J.Adaptation in natural and artificial sys-tems[M].MIT Press,Cambridge,1992.
- [15]Eberhart,R C and Kennedy J.new optimizer usingparticle swarm theory[C].Proc,Sixth InternationalSymposium on Nagoya,Japan,1995:39-43.